

IGCSE

London Examinations IGCSE

Mathematics (4400)

First examination May 2004

July 2003, Issue 1

delivered locally, recognised globally

Specimen Papers and Mark Schemes

Mathematics (4400)

London Examinations IGCSE

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel International centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our International Customer Relations Unit

Tel +44 (0) 190 884 7750 international@edexcel.org.uk www.edexcel-international.org

Authorised by Elizabeth Blount Publications Code: UG013054 All the material in this publication is copyright © Edexcel Limited 2004

Contents

Specimen Papers

Specimen Paper 1F (Foundation Tier)	1
Specimen Paper 2F (Foundation Tier)	19
Specimen Paper 3H (Higher Tier)	37
Specimen Paper 4H (Higher Tier)	53

www.mymathscioud.com

Mark Schemes and Specification Grids

Mark Scheme and Specification Grid Paper 1F (Foundation Tier)	71
Mark Scheme and Specification Grid Paper 2F (Foundation Tier)	79
Mark Scheme and Specification Grid Paper 3H (Higher Tier)	85
Mark Scheme and Specification Grid Paper 4H (Higher Tier)	91

Important Note

Please note that the boxes which appear after each question and sub question refer to the grade at which that question is set, and the specific area in the Specification which that question tests.

This information is given to be of use to teachers and it will **NOT** appear on the examination paper when this Specification is first assessed in April/May 2004.

Centre No.					Paper	Referei	nce			Surname	WW. Mynain Muhains
Candidate No.			4	4	0	0	/	1	\mathbf{F}	Signature	IS CIOUD
											Com

Paper Reference(s)	Examiner's use only
London Examinations IGCSE	Team Leader's use on
Mathematics	
Paper 1F	
Foundation Tier	
Specimen Paper	
Time: 2 hours	
Materials required for examination Items included with question papers	

Nil

Instructions to Candidates

Nil

In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature.

The paper reference is shown at the top of this page. Check that you have the correct question paper and write the paper reference for which you have been entered.

Answer ALL the questions in the spaces provided in this question paper.

Information for Candidates

There are 18 pages in this question paper. All blank pages are indicated.

The total mark for this paper is 100. The marks for the various parts of questions are shown in round brackets, e.g. (2).

You may use a calculator.

A formula sheet is printed on the inside cover of this question paper.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers. Work steadily through the paper.

Do not spend too long on one question.

Show all stages in any calculations.

If you cannot answer a question, leave it and attempt the next one. Return at the end to those you have left out.

Turn over

(and)

only

W850/4400/57570 1/2/

IGCSE MATHEMATICS 4400

FORMULA SHEET – FOUNDATION TIER

Area of a trapezium = $\frac{1}{2}(a+b)h$

www.mymathscloud.com

Volume of prism = area of cross section \times length

Circumference of circle = $2\pi r$

Area of circle = πr^2

Volume of cylinder = $\pi r^2 h$

Curved surface area of cylinder = $2\pi rh$

	www.myma	L Math
Answer ALL TWENTY FOUR questions.	Leblan	Sciou
Write your answers in the spaces provided.		¥Q.
You must write down all stages in your working.		
Here is a list of numbers.		
8 9 10 11 12 13 14 15 16		
From the list, write down		
(a) the two numbers that are multiples of 5,		G
	(1)	1.1
(b) the two numbers that are factors of 24,		G
	(1)	1.1
(c) a square number,		G
	(1)	1.4
(d) a prime number.		Е
	(1)	1.1
	(Total 4 marks)	
Here are the first five terms of a number sequence	<u>.</u>	
6 10 14 18 22		
(a) Write down the next two terms in the sequence.		
		G 3.1
	(1)	
(b) Explain how you found your answer.		F
	(1)	3.1
(c) Explain why 675 is not a term of this number sequence.		
		Б
		г 3.1
	(1) (Total 3 marks)	
	Page Total	
cimen Papers and Mark Schemes – London Examinations IGCSE in Mathematics (4400) Publication or	Turn over	

City	Nicosia	Paris	London	Moscow	Nairobi	Berlin
Temperature °C	13	-6	0	-21	23	_7
(a) Which city ha	as the lowest	temperatur	e?			(1)
(b) List the tempo Start with the	eratures in or lowest temp	der of size. erature.				(1)
						(2)
(c) Work out the	difference in	temperatu	re between N	lairobi and Pa	aris. 	°C (1)
In the next four he	ours, the tem	perature in	Berlin increa	ased by 8 °C.		
(d) Work out the	new tempera	ture in Ber	lin.			
						°C (1)
					(Tot	al 5 marks)
The points <i>A</i> , <i>B</i> a	nd <i>C</i> lie on t	he circumf	erence of a c	ircle, centre o	Э.	
Write down the sp	pecial name f	or				
(i) the line OA ,						•
 (i) the line <i>OA</i>, (ii) the line <i>BC</i>. 						

Specimen Papers and Mark Schemes – London Examinations IGCSE in Mathematics (4400) Publication code: UG013054 Issue 1, July 2003

Cyprus each month from April to September.	blan. Youg
age number of rs of sunshine each day 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 4 4 4	
Month	
a) Write down the average number of hours of sunshine each day in London in August.	 (1) G (6.1)
b) Write down the average number of hours of sunshine each day in Cyprus in September	r. (6.1
c) Write down the name of the month in which the average number of hours of sunshin each day in London was 7.	e G 6.1
(I n October, the average number of hours of sunshine each day in London is 3 hours. I	.) n
Cyprus, it is 9 hours.	G
d) Draw two bars to show this information on the bar chart. (1	6.1
There are 30 days in September.	
e) Work out the total number of hours of sunshine in Cyprus in September.	
hour (2	$\begin{array}{c c} F \\ \hline 6.2 \\ \hline \end{array}$
(Total 6 marks	ş)
Page Tota	

Here are nine more triangles.

(a) Write down the letters of the three triangles that are congruent to the triangle **T**.

(b) (i) Write down the letter of the triangle that is an enlargement of triangle **T**.

(ii) Find the scale factor of the enlargement.

(2)

(Total 4 marks)

F 5.2

WWW. MYMBHScloud.com

	www	3, 12
This word formula can be used to work out the perimeter of a rectangle	е.	Le blan.
Perimeter = $2 \times \text{length} + 2 \times \text{width}$		10. C
(a) Work out the perimeter of a rectangle with a length of 12 cm and a	width of 7 cm.	
	cm (2)	G 2.3
(b) Work out the width of a rectangle with a perimeter of 50 cm and a	length of 16 cm.	
	cm (3)	F 2.3
	(Total 5 marks)	
(a) (i) Find the value of 6.7^2		F 1.4
(ii) Write your answer to part (i) correct to 1 significant figure.		
	(2)	Е 1.9
(b) Find the value of $\sqrt{75.69}$		F
	(1)	1.4
(c) Find the cube of 12		F
	(1)	1.4
(d) Find the value of $58 + (7.6 + 2.4)^3$		E
	(2)	1.4
	(Total 6 marks)	

Its sides are labelled 1, 2, 3, 4 and 5.

Alan spins the spinner and throws a coin. One possible outcome is (3, Heads).

(a) List all the possible outcomes.

(2)

The spinner is biased.

The probability that the spinner will land on each of the numbers 1 to 4 is given in the table.

Number	1	2	3	4	5
Probability	0.36	0.1	0.25	0.15	

Alan spins the spinner once.

(b) Work out the probability that the spinner will land on 5.

(2)

Bhavana spins the spinner 50 times.

(c) Work out an estimate for the number of times the spinner will land on 1.

(2)

(Total 6 marks)

F 6.3

0

WWW.MYMathscioud.com

D 6.3

D 6.3

www.mymainscloud.com 10. Velociraptor Man (to scale) The scale diagram shows a man and a dinosaur called a velociraptor. The man is of average height. (a) Write down an estimate for the height of the man. Give your answer in metres. F 4.4 m (1) (b) Estimate the height of the velociraptor. Give your answer in metres. F 4.4 m (2)(Total 3 marks) **11.** (a) Simplify 4b + 2c + 3b - 6cЕ 2.2 (2) (b) Factorise $x^2 + 8x$ D 2.2 (2)(Total 4 marks) **Page Total**

12. (a) Work out $\frac{4}{5}$ of 85	www.mymath Le blan.	A SHIS
	(2)	F 1.2
(b) Work out $\frac{8}{9} - \frac{2}{3}$		
	(2)	E 1.2
(c) Work out $\frac{8}{9} \div \frac{2}{3}$ Give your answer as a mixed number.		
	(2)	
	(Total 6 marks)	
13. A cuboid has a volume of 56 cm^3 , a length of 4 cm, a width of 2 cm.		
Work out the height of the cuboid.		
	cm	E 4.9
	(Total 2 marks)	
Specimen Papers and Mark Schemes – London Examinations IGCSE in 10	n Mathematics (4400) Publication code: UG013054 Issue 1, July 2003	

14. Here is a sketch of a triangle.

www.mymainscloud.com

Е 4.5

C 4.5

11

(a) In the space below, make an accurate drawing of the triangle.

Specimen Papers and Mark Schemes – London Examinations IGCSE in Mathematics (4400) Publication code: UG013054 Issue 1, July 2003

This rule is used to find how far apart to plant two bushes.

Add the heights of the bushes. Divide your answer by three.

Aroshe is going to plant two bushes. The heights of the bushes are 46 cm and 20 cm.

(a) Use the rule to work out how far apart Aroshe should plant the bushes.

Ben is going to plant two different bushes. He should plant them 50 cm apart. The height of one of the bushes is 90 cm.

(b) Work out the height of the other bush.

The heights of two different bushes are a cm and b cm. The two bushes should be planted d cm apart.

(c) Write down a formula for d in terms of a and b.

(Total 8 marks)

..... cm

..... cm

(2)

(3)

(3)

www.mymathscioud.com

D 2.3

	m	h A
		My The Marine
16.	Asif has a box of 18 pens.	Le Sci
	9 of the pens are black	blan. Jug.
	The rest of the pens are red.	10m
	Asif is going to choose one pen at random from the box.	
	(a) Find the probability that Asif will choose	
	(i) a blue pen,	
	(ii) a red pen.	
		E 6.3
	(2)	
	(b) Find the probability that Asif will choose a blue pen or a red pen.	
		C 63
	(2)	0.5
	Asif removes one blue pen, one black pen and one red pen from the box.	
	He does not replace them. He then says, "If I choose a pen now, the probability that I will choose a blue pen is the same as it was before I removed the pens."	
	(c) Is Asif right?	
	Show working to justify your answer.	
		E
	(2)	0.3
	(Total 6 marks)	
17.	The population of a village was 1750.	
1/1	The population fell by 12%.	
	Work out the new population.	
		D
	(Total 3 marks)	1.6
	Page Total	
Spec	imen Papers and Mark Schemes – London Examinations IGCSE in Mathematics (4400) Publication code: UG013054	
Issue	e 1, July 2003	

18. The grid represents part of a map.

							1	N
	A	<				B		

The point *C* is on a bearing of 137° from the point marked *A* and on a bearing of 213° from the point marked *B*.

On the grid, mark, with a cross (\times), the position of the point *C* and label it with the letter *C*. (Total 3 marks)

www.mymaihscioud.com

Diagram **NOT** accurately drawn

The diagram shows a paved surface. All the corners are right angles. Work out the area of the paved surface. State the units of your answer.

D 4.9

Diagram **NOT** accurately drawn

ABC is a right-angled triangle. AB = 4 cm, BC = 6 cm.

Calculate the length of *AC*. Give your answer correct to 3 significant figures.

..... cm

(Total 3 marks)

22. Mortar is made from cement, lime and sand. The ratio of their weights is 2 : 1 : 9

Work out the weight of cement and the weight of sand in 60 kg of mortar.

cement kg

sand kg

(Total 3 marks)

21.

C 4.8

nn	W. M. MIN
The length of a rod is 98 cm correct to the nearest centimetre.	Le Le
(a) Write down the minimum length the rod could be.	blan. Our
cm	
(1)	
(b) Write down the maximum length the rod could be.	
cm (1)	1.8
(Total 2 marks)	
$\mathcal{C} = \{\text{Integers}\}$	
$A = \{1, 2, 3, 6\}$ $B = \{4, 5\}$	
$C = \{x : 6 \le 3x < 18\}$	
(a) List the elements of the set	
(1) $A \cup B$,	
(ii) C.	
	С
(3)	1.5
(b) Find $A \cap B$.	
	C 1.5
(Total 4 marks)	
(Total 4 marks) Page Total	
(Total 4 marks) Page Total TOTAL FOR PAPER: 100 MARKS	

BLANK PAGE

www.mymainscioud.com

Centre No.	Paper Reference	Surname Numary Name
Candidate No.	4 4 0 0 / 2 F	Signature
		.com

Materials required for examination

Items included with question papers Nil

Instructions to Candidates

In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature.

The paper reference is shown at the top of this page. Check that you have the correct question paper and write the paper reference for which you have been entered.

Answer ALL the questions in the spaces provided in this question paper.

Information for Candidates

There are 18 pages in this question paper. All blank pages are indicated.

The total mark for this paper is 100. The marks for the various parts of questions are shown in round brackets, e.g. (2).

You may use a calculator.

A formula sheet is printed on the inside cover of this question paper.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers. Work steadily through the paper.

Do not spend too long on one question.

Show all stages in any calculations.

If you cannot answer a question, leave it and attempt the next one. Return at the end to those you have left out.

Server and a server a

IGCSE MATHEMATICS 4400

FORMULA SHEET – FOUNDATION TIER

Area of a trapezium = $\frac{1}{2}(a+b)h$

www.mymathscloud.com

Volume of prism = area of cross section \times length

Circumference of circle = $2\pi r$

Area of circle = πr^2

Volume of cylinder = $\pi r^2 h$

 $\tan\theta = \frac{\mathrm{opp}}{\mathrm{adj}}$

Curved surface area of cylinder = $2\pi rh$

	An	swer ALL 7	WENTY F	OUR questio	ons.		Le Scious
	Wr	ite your ans	wers in the	spaces provi	ded.		
	You m	ust write do	own all stag	es in your w	orking.		
(a) Write	e down the frac	tion of this s	hape which	is shaded.			G
						(1)	1.2
(h) Winit	a down the news	entage of th	ic chana wh:	ch is shaded			
(b) will	e down the perc	entage of th	is shape will	cii is silaueu.		0/	G
						% (1)	1.6
(c) Whice	ch of these fract	ions are not	equivalent t	$\frac{2}{3}?$			
	$\frac{3}{4}$	$\frac{4}{6}$	$\frac{7}{8}$	<u>6</u> 9	$\frac{8}{12}$		
							G 1.2
						(2)	
						(Total 4 marks)	
	5.08	7.8	5.3	7.35	7.21		
(a) List (Start	these numbers i with the smalle	n order of si est number.	ze.				
							G 13
						(2)	1.5
(b) Write	e 0.35 as a fract	ion.	form				
Give	your answer in	ns simplest	101111.				F
						(2)	1.3
						(Total 4 marks)	
						Page Total	

3. The diagram shows a triangle ABC on a centimetre grid.

4. Here are some patterns made with crosses.

(b) Complete the table for Pattern Number 5 and Pattern Number 6

							Pa	age Total	
							(Total	5 marks)	i
								crosses (2)	F 3.1
(d)	Work out the number of a	crosses i	n Patter	n Numbe	r 10.	Pattern	Number	(1)	F 3.1
(c)	Work out the Pattern Nur	mber tha	t has 26	crosses.		<u> </u>		(1)	3.1
	Number of crosses	5	8	11	14				G
	Pattern Number	1	2	3	4	5	6		

Turn over

Her	re are	Jasoi	n's m	aths h	omew	ork m	arks fo	or his la	ast 10]	homev	vorks.				www.r.	Unathscip
			8	6	4	8	1	10	8	4	9	5				blan. Ug
(a)	Writ	e dov	vn the	e mod	lal ma	rk.										G
															(1)	6.2
(b)	Wor	k out	the n	nediar	n mark	ζ.										
																G 6.2
(c)	Wor	k out	the ra	ange (of the	marks									(2)	
		*		6-												F
															(1)	6.2
(d)	Wor	k out	the n	nean 1	mark.											
												••••			(3)	F 6.2
													(Total	7 mar	(S) (ks)	
										7						
(a)	Writ	e dov	vn the	e spec	cial na	me of	this qu	ıadrilat	eral.							G
											•••••	•••••			(1)	4.2
(b)	Writ	e dov	vn the	e num	ber of	lines	of syn	nmetry	this qu	uadrila	teral h	as.				F
															(1)	4.3
(c)	Writ	e dov	vn the	e orde	er of ro	otation	al syn	metry	of this	quadr	ilatera	1.				F
															(1)	4.3
													(Total	3 mar	ks)	

9. Conversion graph for litres and gallons.

12. (a) Complete this table of values for y = 3x - 1.

x	-2	-1	0	1	2	3
У			-1			8

(b) On the grid, draw the graph of y = 3x - 1.

(c) Use your graph to find the value of x when y = 3.5

www.mymainscloud.com

(2)

(Total 5 marks)

13. 40 passengers at Dubai Airport were asked which country they were flying to. Here is a frequency table which shows that information.

Country	Number of passengers	
USA	14	
France	9	
Spain	12	
Greece	5	

Draw an accurate pie chart to show this information. Use the circle below.

 14. Solution of the size of the angle marked x°. Diagram NOT accurately drawn 	mathscioud.com
0	
(ii) Give reasons for your answer.	
	E
(2) (b) (i) Work out the size of the angle marked y°.	4.1
0	
(ii) Give a reason for your answer.	
	$\begin{bmatrix} E\\ 4 \end{bmatrix}$
(2)	7.1
15. $30\% \frac{1}{4} 0.37 \frac{1}{3} \frac{2}{5} 0.299$	
List these numbers in order of size. Start with the smallest number.	
	E 1.3
(Total 3 marks)	

16. This is a recipe for making a Tuna	Bake for 4 people.
---	---------------------------

			m	2 14
				My Marken K.
16.	This is a recipe for mak	ing a Tuna Bake for 4 people.		Le ^S Clou
		Tuna Bake		*.com
		Ingredients for 4 people.		
		400 g of tuna 400 g of mushroom soup 100 g of grated cheddar cheese 4 spring onions 250 g of breadcrumbs		
	Work out the amounts n	eeded to make a Tuna Bake for 10 peo	ple.	
	g of tuna			
	g of mush	aroom soup		
	g of grate	d cheddar cheese		
	spring on	ions		
	g of bread	lcrumbs		D 1.7
			(Total 3 marks)	
			i uge i otur	
Spec	imen Papers and Mark Schemes	- London Examinations IGCSE in Mathematics (440	Turn over 0) Publication code: UG013054	
Issue	e 1, July 2003		31	I

17. (a) Solve 5x - 7 = 2x + 11

D

 $x = \dots$ (3)

C 2.4

WWW.MYM3HSCloud.com

 $y = \dots$ (3)

(Total 6 marks)

		nnn	m. Man
. (a)]	Expand		Le Clu
	(i) $3(2c+5)$		Dian. Og.
	(ii) $y(y = 5)$		
	(ii) $y(y - 3)$		D 2.2
(b)]	Factorise $15m + 10$	(2)	
			D 2.2
(c)]	Expand and simplify $(x+5)(x-3)$		
			C
		(2)	2.2
		(Total 5 marks)	

.....

I

C 1.4

(Total 3 marks)

Weight of donkeys (w kg)	Frequency
$65 < w \le 70$	4
$70 < w \le 75$	10
$75 < w \le 80$	34
$80 < w \le 85$	32
$85 < w \le 90$	16
$90 < w \le 95$	4

22. The table gives information about the weights, in kilograms, of 100 donkeys.

- (a) Write down the modal class interval.
- (b) Work out the class interval which contains the median.
- (c) Work out an estimate for the mean weight of the donkeys.

D	
6.2	

(1)

(2)

.....

www.mymainscloud.com

С 6.2

6.2

C

(Total 7 marks)

..... kg

Page Total

(4)

Turn over Specimen Papers and Mark Schemes – London Examinations IGCSE in Mathematics (4400) Publication code: UG013054 Issue 1, July 2003 35

Centre No.			Paper	Referei	nce			Surname	nymark sets
Candidate No.	4	4	0	0	/	3	H	Signature	.scloud.co

Nil

Instructions to Candidates

In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature.

The paper reference is shown at the top of this page. Check that you have the correct question paper and write the paper reference for which you have been entered.

Answer ALL the questions in the spaces provided in this question paper.

Show all the steps in any calculations and state the units.

Nil

Information for Candidates

There are 16 pages in this question paper. All blank pages are indicated.

The total mark for this paper is 100. The marks for the various parts of questions are shown in round brackets, e.g. (2).

You may use a calculator.

A formula sheet is printed on the inside cover of this question paper.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers.

Work steadily through the paper.

Do not spend too long on one question.

Show all stages in any calculations.

If you cannot answer a question, leave it and attempt the next one. Return at the end to those you have left out.

Turn over

W850/4400/57570 1/2/

IGCSE MATHEMATICS 4400 FORMULA SHEET - HGHER TIER

Volume of prism = area of cross section \times length

length

Circumference of circle = $2\pi r$

Area of circle = πr^2

Volume of cylinder = $\pi r^2 h$

Curved surface area of cylinder = $2\pi rh$

Area of a trapezium = $\frac{1}{2}(a+b)h$

The Quadratic Equation The solutions of $ax^2 + bx + c = 0$ where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Answer ALL TWENTY THREE questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

 The population of a village was 1750. The population fell by 12%. Work out the new population.

2.

Illustration NOT drawn to scale

This rule is used to find how far apart to plant two bushes.

Add the heights of the bushes. Divide your answer by 3.

The heights of two bushes are a cm and b cm. The two bushes should be planted d cm apart.

Write down a formula for d in terms of a and b.

D

2.3

D 1.6

.....

.....

(Total 3 marks)

Page Total

Turn over

39

(Total 3 marks)

WWW.MYMathscioud.com

The diagram shows a paved surface. All the corners are right angles. Work out the area of the paved surface. State the units of your answer.

www.mymainscloud.com 7. Mortar is made from cement, lime and sand. The ratio of their weights is 2:1:9Work out the weight of cement and the weight of sand in 60 kg of mortar. cement kg С sand kg 1.7 (Total 3 marks) 8. $\mathscr{C} = \{ \text{Integers} \}$ $A = \{ 1, 2, 3, 6 \}$ $B = \{4, 5\}$ $C = \{x : 6 \le 3x < 18\}$ (a) List the elements of the set (i) $A \cup B$, (ii) C С 1.5 (3) (b) Find $A \cap B$. С 1.5 (1) (Total 4 marks)

nn	2. M. 14
10. The length of a rod is 98 cm correct to the nearest centimetre.	Le blan
(a) Write down the minimum length the rod could be.	Dian. Sud. Con
cm	1.8
(1)	
(b) Work out the maximum total length of 6 of these rods.	В
cm (2)	
(Total 3 marks)	
11. Solve the equation $x^2 - 6x - 27 = 0$	
	B
	2.7
(Total 3 marks)	
12. (a) Write down the gradient of the line with equation $y = 3x + 5$	B
	3.3
(1)	
(b) Find the equation of the line which is parallel to the line with equation $y = 3x + 5$ and passes through the point with coordinates (4,10).	
	B
(2)	3.3
(Total 3 marks)	

14. Here is a 5-sided spinner.

Its sides are labelled 1, 2, 3, 4 and 5. The spinner is biased. The probability that the spinner will land on each of the numbers 1 to 4 is given in the table.

Number	1	2	3	4	5
Probability	0.36	0.1	0.25	0.15	

Alan spins the spinner once.

(a) Work out the probability that the spinner will land on 5.

Bhavana spins the spinner once.

(b) Work out the probability that it will land on 3 or 4.

Chris spins the spinner 50 times.

(c) Work out an estimate for the number of times the spinner will land on 1.

(2)

.....

(2)

(2)

6.3

D

WWW.MYMathscioud.com

C 6.3

D 6.3 Dylan spins the spinner twice.

- (d) Work out the probability that
 - (i) the spinner will land on 2 both times,

(ii) the spinner will land on an even number exactly once.

(6)

.....

(Total 12 marks)

.....

www.mymainscloud.com

A 6.3

A* 6.3

Age (t years)	Frequency
$0 < t \le 5$	41
$5 < t \le 10$	26
$10 < t \le 15$	20
$15 < t \le 20$	10
$20 < t \le 25$	3

16. The table gives information about the ages, in years, of 100 aeroplanes.

(a) Complete the cumulative frequency table.

Age (t years)	Cumulative frequency
$0 < t \le 5$	
$0 < t \le 10$	
$0 < t \le 15$	
$0 < t \le 20$	
$0 < t \le 25$	

(b) On the grid, draw a cumulative frequency graph for your table.

Specimen Papers and Mark Schemes – London Examinations IGCSE in Mathematics (4400) Publication code: UG013054 Issue 1, July 2003 В 6.1

В

6.2

(1)

www.mymaihscloud.com

www.mymainscloud.com (c) Use your graph to find an estimate for the inter-quartile range of the ages. Show your method clearly. В 6.2 years (2)(Total 5 marks) 17. \mathbf{t} A weight is hung at the end of a beam of length L. This causes the end of the beam to drop a distance d. d is directly proportional to the cube of L. d = 20 when L = 150(a) Find a formula for *d* in terms of *L*. *d* = А 2.5 (3) (b) Calculate the value of L when d = 15*L* = А (2)2.5 (Total 5 marks) **Page Total Turn over**

18. Convert the recurring decimal 0.23 to a fraction. Give your answer in its simplest form.

www.mymathscloud.com

21. Simplify fully
$$\frac{x^2 - 10x + 25}{x^2 - 25}$$

A* 2.2

А 5.1

A* 5.1

WWW. MYMBHScloud.com

(Total 3 marks)

ABCDEF is a regular hexagon.

$$\stackrel{(\mathbb{R})}{OA} = \mathbf{a}, \qquad \stackrel{(\mathbb{R})}{OB} = \mathbf{b}$$

- (a) Write down, in terms of **a** and **b**, the vectors
 - (i) $\stackrel{(\mathbb{R})}{AB}$

22.

- (ii) $\stackrel{(\mathbb{R})}{FC}$
- (3) (b) Write down one geometrical fact about AB and FC which could be deduced from your answers to part (a). (1) (Total 4 marks) **Page Total Turn over** Specimen Papers and Mark Schemes - London Examinations IGCSE in Mathematics (4400) Publication code: UG013054 Issue 1, July 2003

23. Solve the simultaneous equations

$$y = 2x - 7$$
$$x^2 + y^2 = 61$$

(Total 7 marks)

Page Total

TOTAL FOR PAPER: 100 MARKS

A* 2.7

www.mymainscioud.com

Centre No.	Paper Reference	Surname
Candidate No.	4 4 0 0 / 4 H	Signature Signature

Paper Reference(s) Examiner's use only 4400/4H **London Examinations IGCSE** Team Leader's use only **Mathematics** Paper 4H Higher Tier Specimen Paper Time: 2 hours Materials required for examination

Nil

Items included with question papers Nil

Instructions to Candidates

In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature.

The paper reference is shown at the top of this page. Check that you have the correct question paper and write the paper reference for which you have been entered.

Answer ALL the questions in the spaces provided in this question paper.

Show all the steps in any calculations and state the units.

Information for Candidates

There are 18 pages in this question paper. All blank pages are indicated.

The total mark for this paper is 100. The marks for the various parts of questions are shown in round brackets, e.g. (2).

You may use a calculator.

A formula sheet is printed on the inside cover of this question paper.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers.

Work steadily through the paper.

Do not spend too long on one question.

Show all stages in any calculations.

If you cannot answer a question, leave it and attempt the next one. Return at the end to those you have left out.

IGCSE MATHEMATICS 4400 FORMULA SHEET - HIGHER TIER

The Quadratic Equation The solutions of $ax^2 + bx + c = 0$ where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Volume of cylinder = $\pi r^2 h$

Curved surface area of cylinder = $2\pi rh$

h

www.mymainscioud.com

D

1.7

Write your answers in the spaces provided.

You must write down all stages in your working.

1. This is a recipe for making a Tuna Bake for 4 people.

Tuna Bake

Ingredients for **4** people.

400 g of tuna 400 g of mushroom soup 100 g of grated cheddar cheese 4 spring onions 250 g of breadcrumbs

Work out the amounts needed to make a Tuna Bake for 10 people.

..... g of tuna

..... g of mushroom soup

..... g of grated cheddar cheese

..... spring onions

..... g of breadcrumbs

83.5×978	3	I. My Maths Clo
Work out the value of $\sqrt{1025 + 222}$	$\overline{2}$	Dian Gy
Give your answer correct to 3 sign	nificant figures.	
		C 1.11
	(Total 3 marks)	
(a) Expand		
(i) $3(2c+5)$		
(ii) $y(y-5)$		
		2.2
(b) Eactorise $15m \pm 10$	(2)	
(0) 1 40101150 15/1/170		D 2.2
	(1)	
(c) Expand and simplify $(x+5)(x+5)$	(-3)	
		C 2.2
	(2)	
	(Total 5 marks)	
Express 72 as the product of powe	ers of its prime factors.	
		C 1 4
	(Total 2 marks)	

Weight of donkeys (w kg)	Frequency
$65 < w \le 70$	4
$70 < w \le 75$	10
$75 < w \le 80$	34
$80 < w \le 85$	32
$85 < w \le 90$	16
$90 < w \le 95$	4

8. The table gives information about the weights, in kilograms, of 100 donkeys.

- (a) Write down the modal class interval.
- (b) Work out an estimate for the mean weight of the donkeys.

..... kg (**4**)

(1)

(Total 5 marks)

D 6.2

www.mymainscloud.com

C 6.2

- 11. The Andromeda Galaxy is 21 900 000 000 000 000 000 km from the Earth.
 - (a) Write 21 900 000 000 000 000 000 in standard form.

Light travels 9.46×10^{12} km in one year.

(b) Calculate the number of years that light takes to travel from the Andromeda Galaxy to the Earth. Give your answer in standard form correct to 2 significant figures.

> (2)

(1)

WWW.MYMathscloud.com

1.9

В 1.9

(Total 3 marks)

12. Solve the simultaneous equations

6x + 2y = 214x + 3y = 19

В 2.6

y =

(Total 4 marks)

13. (a) Differentiate with respect to x

$y = x^3 -$

$$y = x^3 - 3x^2 + 5, x > 0.$$

	mm	TUN MARS
ntiate with respect to x		Le Clo
$3x^2 + 5$		blan. Jud. Com
		B 3 A
	(2)	5.4
find the coordinates of the minimum point of the curve		
$3x^2 + 5, x > 0.$		
	()	A 3.4
	(4)	
	(Total 6 marks)	
	Page Iotal	
	Turn over	

15. A bag contains 10 coloured discs.

4 of the discs are red and 6 of the discs are black. Asif is going to take two discs at random from the bag without replacement.

(a) Complete the tree diagram.

Issue 1, July 2003

The diagram shows the landing area for a throwing competition. OAB is a sector of a circle, centre O, with radius 10 m. Angle $AOB = 80^{\circ}$.

Calculate the perimeter of the sector.

..... cm

(ii) Express $(4 + \sqrt{18})^2$ in the form $a + b\sqrt{2}$.

(3)

(2)

(Total 5 marks)

.....

4.9

www.mymainscloud.com

А 1.4

A* 1.4

A

18. (a) Complete the table of values for $y = x^3 - 2x^2 - 5x$

x	-2	-1	0	1	2	3	4
у		2					

(b) On the grid, draw the graph of $y = x^3 - 2x^2 - 5x$

(2)

В

3.3

WWW. MYMBIHSCIOLUG.COM

(2)

3.3

The *x* coordinates of the points of intersection of the curve and a certain straight line give the solutions to the equation $x^3 - 2x^2 - 6x + 1 = 0$

(c) Find the equation of the straight line.

(2)	A 3.3
(Total 6 marks)	
Page Total	
Turn over	
Issue 1, July 2003 65	

19. The unfinished histogram and table give information about the heights, in centimetres, of the Year 11 students at Mathstown High School.

- (a) Use the histogram to complete the table.
- (b) Use the table to complete the histogram.

(3)

(3)

(Total 6 marks)

$$n(\mathscr{E}) = 32, n(A') = 20 \text{ and } n(A \cap B') = 8$$

Find

(i) n(*A*),

(ii) $n(A \cap B)$.

21. Show that the equation

$$\frac{2}{(x+1)} - \frac{1}{(x+2)} = \frac{1}{2}$$

can be written in the form

$$x^2 - x - 4 = 0$$

A 1.5

A*

.....

(Total 3 marks)

www.mymainscloud.com

Diagram **NOT** accurately drawn

The radius of the base of a cone is 3.4 cm and its slant height is 8.1 cm.

(a) Calculate the total surface area of the cone. Give your answer correct to 3 significant figures.

..... cm²
(3)

A larger, mathematically similar cone has a volume 64 times the volume of the above cone.

(b) Calculate the radius of the base of the larger cone.

..... cm (2)

(Total 5 marks)

A* 4.10

WWW.MYMathscloud.com
23. Make *y* the subject of the formula $x = \sqrt{\frac{y-a}{y-b}}$

A* 2.3

www.mymainscioud.com

69

BLANK PAGE

www.mymainscioud.com

Edexcel International

London Examinations

IGCSE

IGCSE Mathematics (4400)

Mark Schemes for Specimen Papers with Specification Grid

Paper 1F (Foundation Tier)

Paper 1F – Specification Grid

											-
Pap	er 1F -	- Spe	cificati	ion Gri	d						
Qu.	Specification Ref	Number	Algebra	Shape, space & measures	Handling data	Grade G	Grade F	Grade E	Grade D	Grade C	Common to Paper 3H
	1.1, 1.4	4				3		1			
	3.1		3			1	2				
;	1.1	5				3	2				
	4.6			2		2					
	6.1, 6.2				6	4	2				
	4.2, 5.2			4		2	2				
	2.3		5			2	3		1		
	1.4, 1.9	6					3	3			
	6.3				6		2		4		$(b)(c) \rightarrow Q13$
)	4.4			3		1	3				
	2.2		4					2	2		$(b) \rightarrow 05$
	1.2	6					2	2	2		$(c) \rightarrow Q4$
	4.9			2				2		1	
	4.5			5				3		2	$(b) \rightarrow Q6$
	2.3, 2.4		8			2		3	3		$(c) \rightarrow Q2$
	6.3				6			4		2	
	1.6	3							3		Q1
	4.4			3				1	2	1	
	4.9			4					4	1	Q3
)	1.10, 4.4	3								3	
	4.8			3						3	Q9
2	1.7	3			1					3	Q7
	1.8	2								2	$(a) \rightarrow Q10$
	1.5	4			İ 🗌	1			Ì	4	Q8
То	tal	36	20	26	18	19	21	21	20	19	

www.mymathscloud.com

No		Spec	Grade	Working	Answer	Mark	Notes	
1	(a)	1.1	G		10, 15	1	B1	
	(b)	1.1	G		8, 12	1	B1	
	(c)	1.4	G		16	1	B1	
	(d)	1.1	E		11 or 13	1	B1	
2	(a)	3.1	G		26, 30	1	B1	
	(b)	3.1	F		eg Add 4,	1	B1	
					4n + 2			
	(c)	3.1	F	eg All terms in the se	quence are even.	1	B1	
				675 is odd				
3	(a)	1.1	G		Moscow	1	B1	
	(b)	1.1	G		-21, -7, -6, 0,	2	B2 B1 for all except	t
					13, 23		one in correct	
							order	
	(c)	1.1	F		29	1	B1	
	(d)	1.1	F		1	1	B1	
4	(i)	4.6	G		radius	2	B1	
	(ii)	4.6	G		chord		B1	
5	(a)	6.1	G		6	1	B1	
	(b)	6.1	G		11	1	B1	
	(c)	6.1	G		June	1	B1	
	(d)	6.1	G		Bars correct	1	B1	
	(e)	6.2	F	$(b) \times 30$		2	M1	
					330		A1 ft from (b)	

								4
	. –							
	per 1F	– Ma	rk Sch	Working	Anguyon	Monk	Note	<u></u>
110 6	(0)	4.2	Graue	working			Rote R2	Bl for 2 and not
0	(a)	4.2	0		D , L , П	2	D2	BI for 2 and not
	$(\mathbf{b})(\mathbf{i})$	5.2	F		Eorl	2	D1	for either F or L or
	(0)(1)	5.2	1,		1.011	2	DI	both
	(ii)	5.2	F		2		B1	(dep on first B1)
7	(a)	2.3	G	$2 \times 12 + 2 \times 7$		2	M1	(r r r r r r r r r r
				or 24 & 14 seen				
					38		A1	
	(b)	2.3	F	$2 \times 16 + 2W = 50$		3	M1	
				2W = 18			M1	
					9		A1	
8	(a)(i)	1.4	F		44.89	2	B1	
	(ii)	1.9	E		40		B1	
	(b)	1.4	F		8.7		BI	
	(c) (d)	1.4		10 soon	1728		BI M1	
	(u)	1.4	L		1058	2		
9	(a)	6.3	F	(1.H) (2.H) (3.H) (4	.H) (5.H)	2	B2	B2 for all 10
-	()			(1,T) $(2,T)$ $(3,T)$ $(4,T)$	T) (5,T)	_		(condone
					, , , ,			omission of (3,H))
								B1 for 6 correct
	(b)	6.3	D	1 –		2	M1	
				(0.36+0.1+0.25+				
				0.15)				
		6.0			0.14		Al	
	(c)	6.3	מן	0.36×50	10	2	MI	
					18		AI	

ap	er 1I	⁼ – Ma	rk Sch	eme				
lo		Spec	Grade	Working	Answer	Mark	Note	s
)	(a)	4.4	F		1.5 - 2	1	B1	
	(b)	4.4	F	(a) × (3 – 4)		2	M 1	
					4.5 - 8		A1	
	(a)	2.2	Е		7b - 4c	2	B2	B1 for 7 <i>b</i>
								B1 for -4c
	(b)	2.2	D		x(x+8)	2	B2	B1 for $x(\ldots)$
		1.0					241	or $x + 8$ seen
	(a)	1.2	F	\div by 5 & \times by 4	C 0	2	MI	
	(1-)	1.2	Б	0	68		AI	
	(D)	1.2	E	$\frac{8}{9}-\frac{6}{9}$		2	IVI I	
					2		A1	
					9			
	(c)	1.2	D	$\frac{8}{-} \times \frac{3}{-}$		2	M 1	
				9 2	1		A 1	
					$1\frac{1}{3}$		AI	
3		4.9	Е	eg 56 ÷ (4×2)		2	M1	
					7		A1	
4	(a)	4.5	Е	$RQ 7.7 \text{cm} \pm 0.2 \text{cm}$	& <i>PR</i> 6.4cm <u>+</u>	3	B1	·
				0.2cm				
					$\angle R 35^{\circ} \pm 2^{\circ}$		B1	
					correct Δ		B1	within guidelines
	(b)	4.5	C	construction arcs		2	M1	
			1		\angle bisector		A1	within guidelines

Рар	er 1F	– Ma	rk Sche	eme				
No		Spec	Grade	Working	Answer	Mark	Notes	
15	(a)	2.3	G	$(46+20) \div 3$		2	M1	
	(b)	2.4	Е	3×50 or (90+ <i>x</i>)÷3=50	22	3	A1 M1	
	(c)	2.3	D	150–90 or 90+ <i>x</i> =150	60 $d = \frac{a+b}{3}$	3	M1 A1 B1 1 B2 1	for LHS $d = \dots$ for $\frac{a+b}{2}$
							B1 f	3 for $a + b \div 3$, $a + \frac{b}{3}$
16	(a)(i)	6.3	Е		$\frac{9}{18}$ or $\frac{1}{2}$	2	B1	
	(ii)	6.3	E		$\frac{4}{18}$ or $\frac{2}{9}$		B1	
	(b)	6.3	C	(a)(i) + (a)(ii)	$\frac{13}{18}$	2	M1 A1 f	ft from (a)
	(c)	6.3	E	$\frac{8}{15}$ seen		2	M1	
				probabi	lity has increased		A1	
7		1.6	D	$\frac{12}{100} \times 1780$ or 210		3	M1	
				1750 – "210"	1540		M1 0	dep on first M1
					1540		AI	

No		Spec	Grade	Working	Answer	Mark	Notes	
18		4.4	Е	line on bearing		3	M1	
			П	137 <u>+</u> 2°			M1	
				$213+2^{\circ}$			IVII	
			D	\times marked within guid	lelines		A1	
9		4.9	D	eg 7×2 + 4×8 +		4	M1	for splitting up area
				10×2				
				14 + 32 + 20	66		A1	2 correct products
					m^2		B1	
0		1.10/	С	2.4 seen		3	B1	
		4.4		126 24 126			MI	
				136 ÷ 2.4 or 136 ÷ 2.24			IVI I	
				2.21	55		A1	
21		4.8	С	$4^2 + 6^2$ or 52 seen		3	M1	
				$\sqrt{36+16}$			M1	dep on first M1
					7.21		A1	Accept 3 sf or better
22		1.7	C	$60 \div 12$ or 5 seen		3	M1	
					10		A1	
23	(a)	1.8	С		45	2	AI B1	Accent 98 499 or
	(")	1.0			21.5			better
	(b)	1.8	C		98.5		B1	
24	(a)(i)	1.5	C		1,2,3,4,5,6	3	B1	
		16			1 1 2 4 5		1 10/0	DI for 7 7 4 5 6

Edexcel International

London Examinations

IGCSE

IGCSE Mathematics (4400)

Mark Schemes for Specimen Papers with Specification Grid

Paper 2F (Foundation Tier)

Paper 2F – Specification Grid

u. Specfic ^l Ref	tion Number	Algebra	Shape, space & measures	Handling data	Grade G	Grade F	Grade E	Grade D	Grade C	Common to Paper 4H
1.2, 1.0	4	_	_		4		_			
1.3	4				2	2				
3.3, 4.1	,	2	5		6	1				
3.1		5			2	3				
6.2				7	3	4				
4.2, 4.3			3		1	2				
4.4			2		2			1		
1.6	4					2		2		$(b) \rightarrow Q4$
3.3		3				3				
4.9			2			2				
1.10	4						4			
3.3		5					5			
6.1				4			4			
4.1			4				4			
1.3	3						3			
1.7	3							3		Q1
2.4		6						3	3	Q2
5.2			5					5		Q3
1.11	3								3	Q5
2.2		5						3	2	Q6
1.4	3								3	Q7
6.2				7				1	6	Q8
4.9			4					2	2	Q9
4.8			3						3	Q10
Total	28	26	28	18	20	19	20	19	22	

Spec Grade Working Answer Mark Notes (a) 1.2 G $\frac{6}{10}$ or $\frac{3}{5}$ 1 B1 (b) 1.6 G $\frac{6}{10}$ or $\frac{3}{5}$ 1 B1 (a) 1.3 G 5.08, 5.3, 7.21, 7.35, 7.8 2 B2 B1 for 1 and 0 × (a) 1.3 F $\frac{35}{100}$ 2 B1 for $\frac{1}{20}$ cao (b) 1.3 F $\frac{35}{100}$ 2 B1 for $\frac{7}{20}$ cao (a)(i) 3.3 G (7,1) 2 B1 for $\frac{7}{20}$ cao (a)(i) 3.3 G (7,1) 2 B1 for $\frac{7}{20}$ cao (ii) 4.1 G acute B1 for $\frac{7}{20}$ cao B1 (iii) 4.1 G acute B1 B1 (ii) 4.1 G acute B1 B1 (b) 3.1 G acute B1 B1 <t< th=""><th></th><th></th><th>1</th><th>1</th><th>1</th><th>1</th><th>- i</th><th>1</th><th></th></t<>			1	1	1	1	- i	1	
(a) 1.2 G $\frac{1}{10}$ or $\frac{3}{5}$ 1 B1 (b) 1.3 G $5.08, 5.3, 7.21, 7.35, 7.8$ 2 B2 B1 for $1\checkmark$ and $0 \times$ (a) 1.3 F $\frac{3}{100}$ $\frac{3}{100}$ 2 B1 for $\frac{13}{100}$ (a) 1.3 F $\frac{3}{100}$ $\frac{7}{20}$ 2 B1 for $\frac{13}{100}$ (a) 1.3 G $5.08, 5.3, 7.21, 7.35, 7.8$ 2 B2 B1 for $1\checkmark$ and $0 \times$ (b) 1.3 F $\frac{3}{100}$ $\frac{7}{20}$ 2 M1 $for \frac{3}{20} (a) 3.3 G (0,3) 1 B1 1 1 1 1 (ii) 3.3 G (0,3) 1 B1 1 1 1 1 (b) 4.1 G 1 30.34 2 B1 1 1 1 (b) 3.1 G 2 1 1 1 1 1 (b) 3.1 G 2 1$	No 1	(-)	Spec	Grade	Working	Answer	Mark	Notes	8
(b) (c) 1.6 1.2 G G G G $\frac{3}{4}$ and $\frac{7}{8}$ 1 2 B1 B1 B2 B1 for 14' and 0 × (a) 1.3 G I 5.08, 5.3, 7.21, 7.35, 7.8 2 C B2 MI B1 for 14' and 0 × (b) 1.3 F $\frac{35}{100}$ 2 T MI B1 for 14' and 0 × (a) 1.3 F $\frac{35}{100}$ 7 T 2 C MI B1 for 14' and 0 × (b) 1.3 G 5.08, 5.3, 7.21, 7.35, 7.8 2 T MI B1 for 14' and 0 × (a) 1.3 G $\frac{3}{100}$ 7 T 2 MI MI B1 for 14' and 0 × (a) 3.3 G $(7,1)$ 2 MI B1 $(7,1)$ 2 MI B1 (d) 3.1 G $(7,1)$ 2 MI B1 $(7,1)$ $(2 MI)$ $(7,1)$ (c) 3.1 G $(7,1)$ $(2 MI)$ $(7,1)$ $(7,1)$ $(7,1)$ $(7,1)$ $(7,1)$ $(7,1)$ $(7,1)$ $(7,1)$ $(7,1)$ $(7,1)$ $(7,1)$ $(7,1)$ $(7,1)$ $(7,1)$ $(7,1)$ $(7,1)$ <td>1</td> <td>(a)</td> <td>1.2</td> <td>G</td> <td></td> <td>$\frac{6}{10}$ or $\frac{3}{5}$</td> <td>1</td> <td>BI</td> <td></td>	1	(a)	1.2	G		$\frac{6}{10}$ or $\frac{3}{5}$	1	BI	
(c) 1.2 G $\frac{3}{2}$ and $\frac{2}{8}$ 2 B2 B1 for 14 and 0 × (a) 1.3 G 5.08, 5.3, 7.21, 7.35, 7.8 2 B2 B1 for all except one in correct order (b) 1.3 F $\frac{3}{100}$ 2 M1 for $\frac{3}{100}$ for $\frac{3}{100}$ (a)(i) 3.3 G (7.1) 2 B1 B1 for $\frac{3}{20}$ cao (a)(i) 3.3 G (7.1) 2 B1 B1 for $\frac{3}{20}$ cao (c) 4.4 G (7.17) 2 B1 B1 for $\frac{3}{20}$ cao (d)(i) 4.1 G acute B1 for $\frac{3}{20}$ cao B1 (ii) 4.1 G acute B1 acute B1 (iii) 3.1 G drawing 1 B1 (c) 3.1 F eg 5 + 9 × 3 32 M1 or putting in order (b) 6.2 G 1.44,5,6,8,8,8,9,10 B1 B1 acute B1 (b) 6.2 F 8+64+4+8+1		(b)	1.6	G		60	1	B1	
(a) 1.3 G 5.08, 5.3, 7.21, 7.35, 7.8 2 B2 B1 for all except one in correct order (b) 1.3 F $\frac{35}{100}$ 2 MI $\frac{1}{60}$ $\frac{2}{100}$ MI $\frac{1}{60}$ $\frac{3}{100}$ $\frac{1}{17}$ $\frac{2}{100}$ $\frac{1}{10}$ $\frac{2}{100}$ $\frac{1}{10}$ $\frac{2}{100}$ $\frac{1}{10}$ $\frac{3}{10}$		(c)	1.2	G		$\frac{3}{4}$ and $\frac{7}{2}$	2	B2	B1 for $1\checkmark$ and $0 \times$
(b) 1.3 F $\frac{35}{100}$ 2 MI for $\frac{35}{100}$ Correct order (a)(i) 3.3 G (7.1) 2 B1 (ii) 3.3 G (0.3) isosceles 1 B1 (b) 4.1 G (7.1) 2 B1 (c) 4.4 G (0.3) 1 B1 (c) 4.4 G 77.75 1 B1 (d)(i) 4.4 G 71.75 1 B1 (d) 3.1 G 1 B1 1 B1 (i) 3.1 G 17.20 1 B1 (d) 5.1 F 8 1 B1 (d) 6.2 G 1.4.4.5.6.8.8.8.9. 2 M1 for putting in order (c) 6.2 F 8 1 B1 A1 (d) 6.2 F 2 M1 for putting in order <td></td> <td>(a)</td> <td>1.3</td> <td>G</td> <td>5.08, 5.3, 7.21, 7.35</td> <td>5, 7.8</td> <td>2</td> <td>B2</td> <td>B1 for all except one in</td>		(a)	1.3	G	5.08, 5.3, 7.21, 7.35	5, 7.8	2	B2	B1 for all except one in
(b) 1.3 1 $\frac{1}{10}$ $\frac{7}{10}$ 2 1.1 for $\frac{7}{10}$ (a)(i) 3.3 G (7,1) 2 B1 (ii) 3.3 G (7,1) 2 B1 (iii) 3.3 G (0.3) B1 (ii) 4.1 G 71.75 1 B1 (iii) 4.1 G 71.75 1 B1 (iii) 4.1 G 70.75 1 B1 (iii) 4.1 G acute B1 B1 (iii) 4.1 G acute B1 B1 (iii) 3.1 G drawing 1 B1 (c) 3.1 F eg 5 + 9 × 3 2 M1 (d) 6.2 G 1.4.4.5.6.8.8.8.9, 2 M1 for putting in order (c) 6.2 F 8+6+4+8+1+10+8 3 A1 B1 (d) 6.2 F 8+6+4+8+1+10+8 A1 B1 (c) 6.3 <		(h)	13	F	35	I	2	M1	correct order
(a) -7 <th< td=""><td></td><td>(0)</td><td>1.5</td><td></td><td>$\frac{33}{100}$</td><td></td><td>2</td><td>1411</td><td>for $\frac{33}{100}$</td></th<>		(0)	1.5		$\frac{33}{100}$		2	1411	for $\frac{33}{100}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						$\frac{7}{20}$		A1	for $\frac{7}{20}$ cao
(ii) 3.3 G (1,7) 1 B1 (ii) 4.1 G (0,3) 1 B1 (c) 4.4 G 71-75 1 B1 (iii) 4.1 G 30-34 2 B1 (iii) 4.1 G 71-75 1 B1 (iii) 4.1 G 1 B1 B1 (iii) 4.1 G 1 B1 B1 (iii) 4.1 G 1 B1 B1 (iii) 3.1 G 1 B1 B1 (b) 3.1 F eg 5 + 9 × 3 2 M1 (a) 6.2 G 1,4,4,5,6,8,8,8,9, 1 B1 (a) 6.2 F 8+6+4+8+1+10+8 3 M1 (c) 6.2 F 8+6+4+8+1+10+8 3 M1 (d) 6.2 F 8+6+4+8+1+10+8 3 M1 (c) 6.2 F 8+6+4+8+1+10+8 3 M1 (b) <td></td> <td>(a)(i)</td> <td>33</td> <td>G</td> <td></td> <td>(7.1)</td> <td>2</td> <td>B1</td> <td>20</td>		(a)(i)	33	G		(7.1)	2	B1	20
	,	(ii)	3.3	G		(0,3)	-	B1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(b)	4.1	G		isosceles	1	B1	
		(c)	4.4	G		71-75	1	B1	
		(d)(i)	4.4	F		30-34	2	B1	
(e) 4.3 G Ine of symmetry 1 B1 (a) 3.1 G drawing 1 B1 (b) 3.1 G 17, 20 1 B1 (c) 3.1 F eg 5 + 9 × 3 2 M1 (d) 3.1 F eg 5 + 9 × 3 2 M1 (a) 6.2 G 1,4,4,5,6,8,8,8,9, 8 1 B1 (c) 6.2 G 1,4,4,5,6,8,8,8,9, 1 B1 (d) 6.2 F 8+6+4+8+1+10+8 3 M1 (a) 4.3 F 2 1 B1 (d) 4.3 F 2 1 B1 (a) 4.4 G 3.8 1		(ii)	4.1	G		acute		B1	
(a) 3.1 (c)		(e)	4.3	G		line of	1	B1	
			2.1	0		symmetry	1	D1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(a) (b)	3.1 2.1	G		drawing		BI D1	
(d) 3.1 F eg $5 + 9 \times 3$ 6 1 D1 (a) 6.2 G 1,4,4,5,6,8,8,8,9, 32 A1 (a) 6.2 G 1,4,4,5,6,8,8,8,9, 1 B1 (b) 6.2 F 8 1 B1 (c) 6.2 F 8 1 B1 (d) 6.2 F 8 44 9 1 (d) 6.2 F 8 44 9 1 (d) 6.2 F 8 44 9 1 (a) 4.2 G parallelogram 1 B1 (a) 4.4 G parallelogram 1 B1 (a) 4.4 G 3.8 1 B1 Accept 4.4-4.6 (b) 4.4 G 3.8 1 B1 Accept 3.7-3.9 (a) 1.6 F $\frac{65}{100} \times 40$ 2 M1 (i) 3.3 E 8.5 B1 1 (ii) 3.3		(\mathbf{D})	3.1	E G		8		DI B1	
(a) 6.2 G 1.4,4,5,6,8,8,8,9, 10 8 1 B1 (a) 6.2 G 1,4,4,5,6,8,8,8,9, 10 2 M1 for putting in order (b) 6.2 F 8+6+4+8+1+10+8 +4+9+5 or 63 63+10 3 M1 dep on first M1 (a) 4.2 G parallelogram 1 B1 (a) 4.2 G parallelogram 1 B1 (a) 4.4 G 4.5 1 B1 Accept 4.4-4.6 (b) 4.4 G 3.8 1 B1 Accept 3.7-3.9 (a) 1.6 F $\frac{65}{100} \times 40$ 2 M1 (a) 1.6 F $\frac{65}{80}$ or 0.45 2 M1 (i) 3.3 E 8.5 B1 (ii) 3.3 E 8.5 B1 (iii) 3.3 E 5.8 B1 (iii) 4.9 F 9 B1 (a) 1.10 E 800 × 1.545 2 M1 (a) <td< td=""><td></td><td>(d)</td><td>3.1</td><td>F</td><td>$eq 5 \pm 0 \times 3$</td><td>0</td><td>$\frac{1}{2}$</td><td>M1</td><td></td></td<>		(d)	3.1	F	$eq 5 \pm 0 \times 3$	0	$\frac{1}{2}$	M1	
(a) 6.2 G 1,4,4,5,6,8,8,8,9, 10 1 B1 M1 for putting in order (c) 6.2 F 7 A1 9 1 B1 (d) 6.2 F 8+6+4+8+1+10+8 +4+9+5 or 63 63+10 3 M1 dep on first M1 (a) 4.2 G parallelogram 1 B1 (a) 4.3 F 2 1 B1 (a) 4.4 G 3.8 1 B1 Accept 4.4-4.6 (b) 4.3 F 2 1 B1 Accept 4.4-4.6 (b) 4.4 G 3.8 1 B1 Accept 4.4-4.6 (b) 1.6 F $\frac{65}{100} \times 40$ 2 M1 (a) 1.6 D $\frac{36}{80}$ or 0.45 2 M1 (i) 3.3 E 8.5 B1 Accept 3.7-3.9 (ii) 3.3 E 5.8 B1 B1 (iii) 3.3 E 8.5 B1 B1 (iii) 3.3		(u)	5.1	1	$\log J + J \wedge J$	32	2	A1	
(b) 6.2 G $1,4,4,5,6,8,8,8,9,\\10$ 7 Al (c) 6.2 F 8+6+4+8+1+10+8 7 Al Bl (d) 6.2 F 8+6+4+8+1+10+8 7 Al Bl (a) 4.2 G 0 Al Bl (a) 4.2 G parallelogram 1 Bl (c) 4.3 F 2 1 Bl (a) 4.4 G parallelogram 1 Bl (a) 4.4 G Al Bl (a) 4.4 G Al Bl (a) 4.4 G Al Bl (a) 1.6 F $\frac{65}{100} \times 40$ 22 MI (a) 1.6 F $\frac{65}{100} \times 40$ 26 Al (b) 1.6 D $\frac{36}{80}$ or 0.45 Bl Al (i) 3.3 E S.8 Bl Bl (ii) 3.3 E S.8 Bl Bl ((a)	6.2	G		8	1	B1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(b)	6.2	G	1,4,4,5,6,8,8,8,9,		2	M1	for putting in order
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					10				
(c) 6.2 F F $8+6+4+8+1+10+8$ 3 M1 (a) 6.2 F $8+6+4+8+1+10+8$ 3 M1 (a) 4.2 G parallelogram 1 B1 (a) 4.2 G parallelogram 1 B1 (a) 4.3 F 2 1 B1 (c) 4.3 F 2 1 B1 (a) 4.4 G 4.5 1 B1 Accept 4.4-4.6 (b) 4.4 G 3.8 1 B1 Accept 3.7-3.9 (a) 1.6 F $\frac{65}{100} \times 40$ 2 M1 (b) 1.6 D $\frac{36}{80}$ or 0.45 2 M1 (i) 3.3 E 18 3 B1 (ii) 3.3 E 5.8 B1 (iii) 4.9 F 5 2 B1 (i) 4.9 F 9 $B1$ $A1$ (ii)						7		A1	
(d) 6.2 F $8+6+4+8+1+10+8 \\ +4+9+5 \text{ or } 63 \\ 63+10$ 3 M1 (a) 4.2 G parallelogram 1 B1 (a) 4.2 G parallelogram 1 B1 (c) 4.3 F 2 1 B1 (a) 4.4 G 4.5 1 B1 Accept $4.4.6$ (b) 4.4 G 3.8 1 B1 Accept $4.4.6$ (b) 4.4 G 22 M1 M1 45 (a) 1.6 F $\frac{65}{100} \times 40$ 26 A1 (b) 1.6 D $\frac{36}{80}$ or 0.45 21 M1 (i) 3.3 E 8.5 B1 (ii) 3.3 E 5.8 B1 (iii) 3.3 E 5.8 B1 (iii) 4.9 F 9 B1 (iii) 4.9 F 22 M1 (a) 1.10 E 800×1.545		(c)	6.2	F	0 6 4 0 1 10 0	9	1	Bl	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(d)	6.2	F	8+6+4+8+1+10+8		3	MI	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					+4+9+3 of 05			M1	den on first M1
(a) 4.2 G parallelogram 1 B1 (b) 4.3 F 0 1 B1 (c) 4.3 F 2 1 B1 (a) 4.4 G 4.5 1 B1 Accept 4.4-4.6 (b) 4.4 G 4.5 1 B1 Accept 3.7-3.9 (a) 1.6 F $\frac{65}{100} \times 40$ 26 A1 (b) 1.6 D $\frac{36}{80}$ or 0.45 21 M1 (i) 3.3 E 18 3 B1 (ii) 3.3 E 8.5 B1 B1 (iii) 3.3 E 8.5 B1 B1 (i) 4.9 F 9 B1 B1 (ii) 4.9 F 9 B1 A1 (b) 1.10 E 120 ÷ 1.545 2 M1 (b) 1.10 E 120 ÷ 1.545 2 M1 (a) 1.10 E 120 ÷ 1.545 2 M1<					03÷10	63		A1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(a)	4.2	G		parallelogram	1	B1	
(c)4.3F21B1(a)4.4G4.51B1Accept 4.4-4.6(b)4.4G3.81B1Accept 3.7-3.9(a)1.6F $\frac{65}{100} \times 40$ 26A1(b)1.6D $\frac{36}{80}$ or 0.452M1(i)3.3E183B1(ii)3.3E183B1(iii)3.3E5.8B1(iii)4.9F52B1(i)4.9F9B1(a)1.10E 800×1.545 2M1(b)1.10E $120 \div 1.545$ 2M1(c)1.10E $120 \div 1.545$ 2M1(a)1.10E $120 \div 1.545$ 2M1(b)1.10E $120 \div 1.545$ A1(b)1.10E $120 \div 1.545$ A1(c)AAA1		(b)	4.3	F		0	1	B1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(c)	4.3	F		2	1	B1	
(b) 4.4 G 3.8 1 B1 Accept 3.7-3.9 (a) 1.6 F $\frac{65}{100} \times 40$ 26 A1 (b) 1.6 D $\frac{36}{80}$ or 0.45 26 A1 (i) 3.3 E 45 A1 (ii) 3.3 E 18 3 B1 (iii) 3.3 E 5.8 B1 B1 (iii) 4.9 F 5 2 B1 (i) 4.9 F 9 B1 B1 (a) 1.10 E 800×1.545 2 M1 (b) 1.10 E $120 \div 1.545$ 2 M1		(a)	4.4	G		4.5	1	B1	Accept 4.4-4.6
(a)1.6F $\frac{65}{100} \times 40$ 26A1(b)1.6D $\frac{36}{80}$ or 0.4526A1(i)3.3E45A1(ii)3.3E183(iii)3.3E5.8B1(iii)4.9F52(i)4.9F9B1(a)1.10E 800×1.545 22(b)1.10E $120 \div 1.545$ 2(b)1.10E $120 \div 1.545$ 2(c)77.67A1		(b)	4.4	G		3.8	1	B1	Accept 3.7-3.9
(b) 1.6 D $\frac{36}{80}$ or 0.45 26 A1(i) 3.3 E 45 A1(ii) 3.3 E 18 3 B1(iii) 3.3 E 5.8 B1(iii) 3.3 E 5.8 B1(ii) 4.9 F 5 2 B1(i) 4.9 F 9 B1(i) 4.9 F 9 $A1$ (ii) 4.9 F 9 $A1$ (iii) 4.9 F 9 $A1$ (a) 1.10 E 800×1.545 1236 $A1$ (b) 1.10 E $120 \div 1.545$ 1236 $A1$ (b) 1.10 E $120 \div 1.545$ 77.67 $A1$		(a)	1.6	F	$\frac{65}{100} \times 40$		2	M1	
					100	26		A1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(b)	1.6	D	³⁶ or 0.45		2	M1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\frac{1}{80}$ or 0.45				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.2	E		45		Al	·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1)	3.3			18	3	BI	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(11) (iii)	5.5 3.2			0.0 5 9		DI D1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	(i)	3.5	E F		5.0	2	B1	
(a) 1.10 E 800×1.545 1236 2 M1 (b) 1.10 E $120 \div 1.545$ or 77.66(99) 1236 2 M1 (77.67) A1 A1	,	(ii)	4.9	F		9	<u>_</u>	B1	
(b) 1.10 E $120 \div 1.545$ 1236 A1 or 77.66(99) 77.67 A1		(a)	1.10	E	800 × 1.545	-	2	M1	
(b) 1.10 E 120 ÷ 1.545 or 77.66(99) 77.67 2 M1 A1		. /	_			1236		A1	
or 77.66(99) 77.67 A1		(b)	1.10	Е	120 ÷ 1.545		2	M1	
77.67 A1					or 77.66(99)				
			1	1	1	77 67	1	A1	

								-1
Pap	er 2F	– Ma	rk Sch	eme		1.16		
10 12	(a)	Spec	Grade	working			P2	P1 for at least two v
12	(a)	2.2			-7, -4, 2, 5	$\begin{bmatrix} 2\\ 2 \end{bmatrix}$	D2 D1	DI IOI al least two
	(0)	5.5	L		line drawn	2	B1	
	(c)	33	F		1.4 - 1.6	1	B1	ft from line
3	(0)	6.1	F	260° : 10 00	1.4 - 1.0 $11(126^{\circ}) E(91^{\circ})$	1	B1	for 260° , 40 on some
5		0.1	L	500 - 40 00	S (108°) G (45°)	7	B1 B2	for 4 sectors within guidelines (B1 for 2 sectors within guidelines) (dep on 2 of previous 3
							DI	marks) for correct
1	(a)(i)	<u> </u>	Б		65	2	P1	labelling
+	(a)(1)	4.1			05	2		
	(11)			180° in a ! and b	ase∠s of an		DI	
	(b)(i)	41	E	isosceles < are eq		2	B1	ft from "65°"
	(0)(1)	1.1		exterior / - sum	of interior / s at	2	B1	Accept $\angle s$ on a st line
				the other two vert			DI	Accept \angle s on a st line
								and \angle sum of $\frac{1}{2}$
5		1.3	E	$\frac{1}{4}$, 0.299,	30%, $\frac{1}{3}$, 0.37, $\frac{2}{5}$ oe	3	M1	for clear attempt to express all numbers in
								the same format
							A2	correct order
								(A1 for 2 correct
								conversions)
6		1.7	D		1000, 1000	3	B3	B2 for three correct
					250, 10, 625			B1 for one correct
7	(a)	2.4	D	5y-2y=11+7		3	M1	
				3y = 18			M1	
					6		A1	
	(b)	2.4	C	$16 - q = 3 \times 3$		3	M1	
				-a = "9" - 16			M1	
				a = 16 - "9"				
				01 q = 10	7		A 1	
2	(2)	5 2			/ Reflection	2	M1	
ر	(a)	5.2			v-axis	<u>ک</u>		
	(h)	52	D		Rotation	3	M1	
	(0)	5.2			90° clockwise	5	A1	or -90°
					about Q		A1	01 90
9		1.11	С		8.09	3	B3	B2 for 65.48 or
-		1.11	Ŭ		0.09	5	23	better seen
								B1 for 81663 or 1247
								or 65.5 seen
0	(a)(i)	2.2	D		6c + 15	2	B1	
	(ii)	2.2	D		$v^2 - 10v$		B1	
	(h)	2.2			$\int_{y}^{y} -10y$	1	D1	
	(0)	2.2			5(3m+2)		ы	
	(c)	2.2	C	$x^2 - 3x + 5x - 15$		2	M1	
			1		$x^{2} + 2x - 15$		A1	
1		14	С	+	$2^{3} \cdot 2^{2}$	3	B 3	B2 for 2×2×2×2
T		1.4			2"×3"		5	B1 for correct prime
								factors
			1	1	1	I	ļ	

								1.
								m
Pap	er 2	F – Ma	ark Sc	heme				
No		Spec	Grade	Working	Answer	Mark	Note	s
22	(a)	6.2	D		$75 < w \le 80$	1	B1	
	(b)	6.2	C	50 ¹ / ₂ th or 50th		2	M1	
					80 < <i>w</i> <u><</u> 85		A1	
	(c)	6.2	C	67.5×4 + 72.5×10		4	M2	M1 if consistent values
				+ 77.5×34 +				other than mid-interval
				82.5×32				values used
				$+87.5 \times 16 + 92.5 \times 4$				
				270+725+2635+26				
				40				
				+1400+370 or 8040				
				"8040" ÷ 100			M1	dep on at least M1
					80.4		A1	
23	(a)	4.9	D	$\pi \times 4.7^2$		2	M1	
					69.397		A1	for 69.4 or better
	(b)	4.9	C	"69.4" × 3.6		2	M1	
					249.832		A1	for 250 or better
24		4.8	C	2.6 sin 32°		3	M2	
					1.3777		A1	for 1.38 or better

Edexcel International

London Examinations

IGCSE

IGCSE Mathematics (4400)

Mark Schemes for Specimen Papers with Specification Grid

Paper 3H (Higher Tier)

Paper 3H – Specification Grid

Qu.	Specification Ref	Number	Algebra	Shape, space &	Handling data	Grade D	Grade C	Grade B	Grade A	Grade A*	Common to Paper 1F
1	1.6	3		measures		3					017
2	2.3		3			3					015
3	4.9	<u> </u>	-	4	1	4				<u> </u>	Q19
	1.2	5				2		3			(a) $\rightarrow 012$
5	2.1,2.2,2.3	1	6			2	4				(a) $\rightarrow 011$
5	4.5	1		2			2			1	Q14
	1.7	3			1		3				Q22
	1.5	4			1		4				Q24
	4.8, 4.9			8	1	2	6				(b) \rightarrow O21
0	1.8	3					1	2			(a) $\rightarrow 023$
1	2.7	i —	3		1		1	3		i —	(a) x
2	3.3		3			1		3			
3	4.8	1		5					5	1	
4	6.3				12	4	2		2	4	$(a)(c) \rightarrow Q9$
5	4.10			3		1	Ì	3			
5	6.1, 6.2				5			5			
7	2.5		5						5		
8	1.3	3							3		
9	3.2		3						3	_	
)	1.4	3								3	
1	2.2		3							3	
2	5.1			4					3	1	
3	2.7		7							7	
Т	otal	24	33	26	17	20	22	19	21	18	

NO		Spec	Grade	Working	Answer	Mark	Note	S
		1.6	D	$\frac{12}{100} \times 1750$ or 210		3	M1	
				1750 – "210"			M1	dep on first M1
		23	D		1540	3	Al B1	for I HS d -
		2.5			$d = \frac{a+b}{3}$		B2	a+b
					C C			10r - 3
								B1 for $a+b\div 3$,
								$a + \frac{b}{3}$
		4.9	D	eg		4	M1	for splitting up area
				$/\times 2 + 4 \times 8 + 10 \times 2$ 14 + 32 + 20			A1	2 correct products
					66		A1	
	(a)	1.2	D	83	m²	2	B1 M1	
	(4)			$\overline{9}^{\times}\overline{2}$	1	_	A 1	
					$1\frac{1}{3}$		AI	
	(b)	1.2	В	eg $\frac{9}{2} - \frac{8}{5}$		3	M1	
				$\frac{45}{10} - \frac{16}{10}$			M1	
					$2\frac{9}{10}$		A1	
	(a)	2.2	D		x(x+8)	2	B2	B1 for $x()$ or
	(b)(i)	2.1	C		r ⁸	2	B1	x + 8 seen
	(ii)	2.1	C		v^4		B1	
	(c)	2.3	C	at = v - u		2	M1	
					$\frac{v-u}{u}$		A1	
		4.5	C	construction arcs	ľ	2	M1	
		17	C	(0, 12, 5,	∠ bisector	2	A1 M1	within guidelines
		1./		$60 \div 12$ or 5 seen	10	5	A1	
	(-)(')	1.5	G		45	2	A1 D1	
	(a)(1) (ii)	1.5 1.5			1,2,3,4,5,6	5	В1 B2	B1 for 2,3,4,5,6
	(b)	1.5	C		-	1	B1	
	(a)	4.9	D	$\frac{1}{2} \times 6 \times 4$		2	M1	
			_		12	_	A1	
	(b)	4.8	C	$4^2 + 6^2$ or 52 seen		3	M1 M1	dep on first M1
				V 30 + 10	7.21		A1	Accept 3 sf or
		4.0					1.00	better
	(c)	4.8	C	$\tan C = \frac{4}{6}$		3	M2	
				0				
)	(2)	1 0	C		33.7	1	A1 P1	for 33.7 or better
	(a) (b)	1.8 1.8	C B	98.5×6	33.7 97.5	1 2	A1 B1 M1	for 33.7 or better

No		Spec	Grade	Working	Answer	Mark	Notes	5
		2.7	В	(x-9)(x+3)=0		3	M1	
					9		AI A1	
2	(a)	3.3	В		3	1	B1	
	(b)	3.3	В		y = 3x - 2	2	B2	B1 for $y = 3x + c$
3	(2)	1.8	A	1		2	M1	where $c \neq 5$
3	(a)	4.0	A	$\frac{1}{2} \times 7.2 \times 8.35 \sin 74^{\circ}$		2	IVI I	
	(b)	10		$7.2^2 + 8.25^2$	28.9	2	A1 M1	28.9 or better
	(0)	4.8	A	7.2 + 8.55 $-2 \times 7.2 \times 8.35 \cos 74^{\circ}$		3	IVI I	
				51.84 + 69.7225			M1	or 88.419 seen
				- 55.1420	9.40		A1	9.40 or better
4	(a)	6.3	D	1 - (0.36 + 0.1 + 0.25)		2	M1	
				+0.15)	0.14		A 1	
	(b)	6.3	C	0.25 + 0.15	0.14	2	M1	
		6.0	-		0.4		A1	
	(c)	6.3	D	0.36×50	18	2	A1	
	(d)(i)	6.3	А	0.1×0.1	10	6	M1	
	<i></i>	6.2	A 34	0.05 0.075	0.01		A1	
	(11)	6.3	A*	0.25 & 0.75 seen 0.25×0.75 or 0.1875			M1	
				× 2 oe			M1	
	-	4.10			0.375		A1	
		4.10	В	$\frac{CD}{11} = \frac{6}{2}$		3	MI	
				11 8			M1	
				$CD = 11 \times \frac{6}{8}$				
					8.25		A1	
5	(a)	6.1	B		41,67,87,97,100	1	B1	
	(0)	0.2	D		Curve or lines		B1 B1	ft
	(c)	6.2	В	25 (or 25 ¹ / ₄) & 75		2	M1	
				(or 75%) indicated	≈ 11.5 (curve)		A1	ft from graph if
					≈ 12 (lines)			B1 or B2 in (c)
7	(a)	2.5	A	$d = kL^3$		3	M1	$k \neq 1$
				$20 = k \times 150^3$	1 0 000005013		M1	
					$a = 0.0000059L^3$		AI	Accept 2 or more sf
	(b)	2.5	Α	13 - 15		2	M1	
				$L = \frac{1}{k''}$				
					136		A1	Accept
3		1.3	A	$10r = 2\dot{3}$		3	M1	155.57-150.5
				9x = 2.1			M1	
					$\frac{7}{30}$		A1	
		1	1		1 10		1	

No		Spec	Grade	Working	Answer	Mark	Note	s
9	(a) (b)	3.2 3.2	A A	eg clear attempt to make x the subject of $y = \frac{1}{x}$	-2	1 2	B1 M1	or flow diagram method +2 \rightarrow divide into 1
				x+2	$\frac{1}{x}-2$		A1	
0	(a) (b)	1.4 1.4	A* A*		$ 3^4 2^{-3} 5^2 $	1 2	B1 B1 B1	
1		2.2	A*	$\frac{(x-5)^2}{(x+5)(x-5)}$		3	M1 M1	for $(x-5)^2$ for $(x+5)(x-5)$
					$\frac{(x-5)}{(x+5)}$		A1	
2	(a)(i) (ii)	5.1 5.1	A A	2 × (i)	$\mathbf{b} - \mathbf{a}$	3	B1 M1	
	(b)	5.1	A*		$\begin{array}{c} 2(\mathbf{b} - \mathbf{a}) \\ AB \parallel FC \text{ or} \\ CF = 2AB \end{array}$		B1	must have correct (a)
3		2.7	A*	$x^{2} + (2x-7)^{2} = 61$ $x^{2} + 4x^{2} - 28x + 49 = 61$		7	M1 M1	
				$5x^{2} - 28x - 12 = 0$ (5x+2)(x-6) = 0			M1 M1	
				$x = -\frac{2}{5}$			A1	
				$x = 0$ $x = -\frac{2}{5}, y = 7\frac{4}{5}$	or		AI A1	for both

Edexcel International

London Examinations

IGCSE

IGCSE Mathematics (4400)

Mark Schemes for Specimen Papers with Specification Grid

Paper 4H (Higher Tier)

Paper 4H – Specification Grid

_		•									
Pap	er 4H	– Spe	cificat	ion Gr	id						
Du.	Specfication	Number	Algebra	Shape.	Handling	Grade D	Grade C	Grade B	Grade A	Grade A*	Common
	Ref		0	space &	data						to
1	17	3		measures		3					Paper 2F
)	2.4	5	6			3	3				Q10 017
3	5.2		0	5		5	5	1			018
	1.6	2		5		2					08
	1.11	3				<u> </u>	3				<u>₹</u> 0 019
	2.2	5	5			3	2				020
	1.4	3	-			5	3				Q=0 021
	6.2				5	1	4				022
	4.9			4	-	2	2				023
)	4.8			3			3				024
	1.9	3						3			~
	2.6		4					4			
3	3.4		6					2	4		
ŀ	4.6			5				5			
5	6.3				7	1	1	2		5	
	4.9			3	1	1	1		3	1	
7	1.4	5							2	3	
3	3.3		6					4	2		
9	6.1				6				6		
0	1.5	3				1			3	1	
1	2.2		4	1						4	1
2	4.9, 4.10			5						5	
.3	2.3		4							4	
To	tal	22	35	25	18	19	20	20	20	21	

No		Spec	Grade	Working	Answor	Mark	Note	ю.
1		1.7	D	working	1000, 1000	3	B3	B2 for three correct
					250, 10, 625			B1 for one correct
2	(a)	2.4	D	5y - 2y = 11 + 7		3	M1	
				3y = 18			M1	
	(b)	2.4	C	$16 - 2 \times 2$	6	2	A1 M1	
	(0)	2.4		$10 - q = 5 \times 5$		5	M1	
				-q - 9 - 10			IVII	
				01 q = 10 - 9	7		Δ1	
3	(a)	5.2	D		Reflection	2	M1	· · · · · · · · · · · · · · · · · · ·
					y-axis		A1	
	(b)	5.2	D		Rotation	3	M1	000
					90° clockwise			or –90°
4		1.6	D	³⁶ or 0.45	about o	2	M1	
				$\frac{1}{80}$ or 0.45	4.5		. 1	
5		1 1 1	C		45	3	AI B3	B2 for 65 /18 or
5		1.11	C		0.09	5	D 5	better seen
								B1 for 81663 or
6	(a)(i)	2.2			6 15		D1	1247 or 65.5 seen
6	(a)(1) (ii)	2.2			6c + 15	2	B1 B1	
	(h)	2.2			y = 10y	1	D1	
	(0)	2.2		2	5(3m+2)			
	(0)	2.2	C	$x^2 - 3x + 5x - 15$	2	2		
7		1.4	C		$x^2 + 2x - 15$	3	AI B3	$D_{2} f_{2} = 0 \cdot (0 \cdot (0 \cdot (2) \cdot $
/		1.4	C		$2^3 \times 3^2$	5	D 5	B2 for 2×2×2×3×3 B1 for correct
								prime factors
8	(a)	6.2	D		$75 < w \le 80$	1	B1	
	(b)	6.2	C	67.5×4 + 72.5×10		4	M2	M1 if consistent
				$+ 77.5 \times 34 + 82.5 \times 32$ + 87.5 \times 16 + 92.5 \times 4				mid-interval values
				270+725+2635+2640				used
				+1400+370 or 8040				
				"8040" ÷ 100	80.4		M1	dep on at least M1
9	(a)	4.9	D	$\pi \times 47^2$	80.4	2	M1	
-				π × 4.7	69 397	-	A1	for 69 4 or better
	(b)	4.9	C	"69.4" × 3.6	07.077	2	M1	
					249.832		A1	for 250 or better
10		4.8	C	2.6 sin 32°	1 2777	3	M2	6 . 1 20 1
11	(a)	19	B		1.3///	1	AI B1	for 1.38 or better
	(h)	1.9		10 10, 10 ¹⁹	2.19×10**	2	M1	
		1.7		$\frac{2.19 \times 10^{12}}{2.19 \times 10^{12}}$		ĺ -	1411	
				9.46×10 ¹²	a a a a b		Λ1	
					2.3×10°		AI	for $2.3 \times 10^{\circ}$
		1					i	

No		Spec	Grade	Working	Answer	Mark	Notes	
2		2.6	В	eg $18x + 6y = 63$		4	M1	multiplication of
				8x + 6y = 38				both equations by appropriate
				10x = 25	<i>x</i> = 2.5		A1	addition or subtraction to obtain one correct
				eg 4 × 2.5 +3 y = 19			M1	solution (dep) substitution for x or y
					<i>y</i> = 3		A1	for second correct solution
13	(a)	3.4	В		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 6x$	2	B2	B1 for $3x^2$ B1 for $-6x$
	(b)	3.4	А	$"3x^2 - 6x" = 0$		4	M1	
				3x(x-2) = 0			M1	
				x = 0 or x = 2			A1	
					(2, 1)		A1	
4	(a)(i)	4.6	В		48	2	B1	
	(ii)		-	opposite $\angle s$ of a cyclic	quadrilateral		B1	
	(b)(i)	4.6	В		18	3	B1	
	(11)			$\angle ABD$ or $\angle ACD = 30^{\circ}$			BI	
				(alternate segment theory) $a_{a} = (A^{2})^{2}$	PD (/ sum of		B1	
				$eg \angle CDD = 40 = \angle A$	$DD (\geq \text{summat})$		DI	
15	(a)	6.3	В	4 6	$\frac{4}{4} = \frac{6}{6} \text{ or on LH branches}$			
	(u)	0.5		$\overline{10}$, $\overline{10}$ oe	on LH branches	2	B1	
	(b)	63	۸ *	9,9,9,9,9		2	M1	
	(0)	0.5	A.	$\frac{1}{10} \times \frac{5}{9}$		2	IVII	
					$\frac{30}{90}$ oe		A1	
	(c)	6.3	A*	$\frac{4}{10} \times \frac{6}{2}$ or $\frac{6}{10} \times \frac{4}{2}$		3	M1	
				sum of both products			M1	
				sum of cour products	48		A1	
		4.0			90			
16		4.9	A	$\frac{80}{3} \times \pi \times 20 \text{ or } 13.96 \dots$		3	MI	
				360				
				+ 20	22.04		M1	
17	(2)	1.4			33.96		Al M1	for 34.0 or better
1/	(a)	1.4	A	$10\sqrt{2}$		2	IVI I	
				$\sqrt{2} \times \sqrt{2}$				
					$5\sqrt{2}$		A1	
	(b)(i)	1.4	A*		$\frac{2}{3}\sqrt{2}$	3	B1	
	(ii)	14	Δ*		572		M1	
	(11)	1.7		$16+8\sqrt{18}+18$	_		A 1	
			1		$34 + 24\sqrt{2}$	1	AI	

0		Spec	Grade	Working	Answer	Mark	Notes	
	(a)	3.3	B	-6.(2).061061	2	2	B2	B1 for 3 correct
	(b)	3.3	В		Points correct Curve	2	B1 B1	
	(c)	3.3	А	$x^3 - 2x^2 - 5x = x - 1$		2	M1	
					y = x - 1		A1	
	(a)	6.1	A		35, 18, 22, 12	3	B3	B2 for 3 correct B1 for 2 correct
	(b)	6.1	A		40	3	В2 B1	
	(i)	1.5	A	8 correctly placed		3	M1	
	(ii)	15	Δ		12		A1 A1	
		2.2	A*	$\frac{2(x+2) - (x+1)}{(x+1)(x+2)} = \frac{1}{2}$	_ ·	4	M1	
				$\frac{x+3}{(x+1)(x+2)} = \frac{1}{2}$			M1	
				2(x+3) = (x+1)(x+2)			M1	
				$2x+6=x^2+3x+2$			A1	
	(a)	4.9	A*	$\pi \times 3.4^2$ or 36.316 + $\pi \times 3.4 \times 8.1$ or 86 519		3	M1 M1	or M2 for $\pi \times 3.4 \times (3.4 + 8.1)$
				01 00.517	122.83		A1	for 123 or better
	(b)	4.10	A*	$\sqrt[3]{64} = 4$		2	M1	
		2.2	۸ *		13.6	4	A1 M1	
		2.5	A	$x^2 = \frac{y-a}{y-b}$		4	1011	
				$x^2 y - y = bx^2 - a$			M1	
				$y(x^2 - 1) = bx^2 - a$			M1	
					$\frac{bx^2-a}{2}$		A1	

Further copies of this publication are available from Edexcel International Publications, Adamsway, Mansfield, Notts, NG18 4FN, UK

Telephone: +44 (0) 1623 450 781 Fax: +44 (0) 1623 450 481 Email: intpublications@linneydirect.com

Order Code UG013054 July 2003 Issue 1

For more information on Edexcel International, please contact our International Customer Relations Unit on +44 (0) 190 884 7750 or visit www.edexcel-international.org or email international@edexcel.org.uk Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: 190 High Holborn, London WC1V 7BH, UK

www.mymathscloud.com